Miesen Silt Laam 82-ID-0566 (82ID-009-13)

Classification: coarse-silty, mixed, frigid Cumulic Ultic Haplexerolls.

General Site Characteristics

Location: Benewah County, Idaho; approx. 3 miles W of St. Joe, Idaho; 225 feet N

& 75 feet W of SE corner of sec. 14, T. 46N., R. 1W.

Forest:

Area: St Joe SSA

Described By/Date: Soil Conservation Service personnel May 28, 1982

Parent Rock/Material: alluvial river sediments

Habitat Type: clover, camas, timothy, other grasses and forbes.

Topography: level

Landform: river flood plain Climate:

Weathering: Precipitation: 31 inches

Formation Name: Erosion: Slope: 2 percent Infiltration:

Aspect: Permeability: moderate

Elevation: 2134 feet Storage:

Soil Depth: Drainage: somewhat poorly

Eff. Rooting Depth: Air Temp:

Litter Type: Soil Temp at 20 inches:

Surface Rock: Salt/Alkal:

Remarks:

Pedon Description

- E 9-1 cm. Light gray continuous volcanic ash layer from Mt. St. Helen's May 1988.
- Ai i-20 cm. Grayish brown (10YR 5/2) silt loam, very dark brown (10YR 2/2) moist; weak fine and medium subangular blocky structure parting to moderate fine and medium granular structure; slightly hard, friable, slightly sticky and slightly plastic; strongly acid pH 5.3; many very fine and fine, common medium roots; many very fine and fine and few medium tubular and interstitial pores; clear wavy boundary.

82-ID-0566 (continued)

- A2 20-66 cm. Grayish brown (18YR 5/2) silt loam, very dark brown (18YR 2/2) moist; moderate fine and medium subangular blocky structure; slightly hard, frioble, slightly sticky and slightly plastic; strongly acid pH 5.3; many very fine, common fine and medium roots; many very fine, common fine and medium tubular and interstitial pores; abrupt wavy boundary.
- A3 66-81 cm. Grayish brown (18YR 5/2) silt loam, very dark grayish brown (18YR 3/2) moist; few fine organic stains very dark brown (18YR 2/2); moderate medium and coarse subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; strongly acid pH 5.4; common very fine and fine, few medium roots; common very fine, few fine tubular and interstitial pores; gradual wavy boundary.
- A4 81-114 cm. Brown (10YR 5/3) silt loam, dark brown (10YR 3/3) moist; moderate medium and coarse subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; strongly acid pH 5.5; few very fine roots; few very fine and and fine tubular pores; common very fine mica flakes; mottles dark grayish brown (10YK 4/2), very c,1,f, 1,1,f dark yellowish brown (10YR 4/4) moist; few fine and medium silt masses dark yellowish brown (10YR 4/4) moist; clear wavy boundary.
- AB 114-140 cm. Pale brown (10YR 6/3) silt loam, dark brown (10YR 3/3) moist; moderate medium and coarse subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; moderately acid pH 5.6; few very fine roots; few very fine tubular pores; mottles dark grayish brown (10YR 4/2), very dark grayish brown (10YR 3/2), and dark yellowish brown (10YR 4/4) moist; c,1,f (dark brown to brown (10YR 4/3) m,2,3 d mottles; common very fine mica flakes; clear wavy boundary.
- Bu 148-152 cm. Pale brown (10YR 6/3) silt loam, dark brown to brown (10YR 4/3) moist; weak coarse subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; moderately acid pH 5.7; few very fine roots; few very fine and fine tubular pores; common very fine mica flakes; few fine organic stains very dark brown (10YR 2/2); mottles brown (10YR 5/3), very dark brown (10YR 2/2), dark brown to brown (10YR 4/3); c,i, f; 4(m,3, p yellowish brown (10YR 5/6); few fine pale brown (10YR 6/3) mottles.

Pedon: Miesen Silt Logs 82-ID-0566 (82ID-099-13)

Date: June 1984

Cauala	Herizon	Depth		EC*10	% Water at	Available		Sesqu	iexides		Spedic
Sample No.	HALTTON	уер (и	pH paste	E0410	Saturation	P	Di-Citrate Fe	Extract Al	Pyrophosphate Fe	Extract Al	opease
		CM		nnhos/cn		ppn	al de cale de partir de l'al de partir de l'al partir de l'al partir de l'al d		7		
1 2 3	E A1 A2 A3 A4 AB	0~ 1 1- 28 20- 66 66- 81	NS 5.3 5.4 5.6 5.7	NS 0.26 0.16 0.13	NS 66 65 62	NS 0.7 1.2 1.7	NS 1.17 1.18 1.16	NS 0.27 0.29 4.28	NS 0.48 0.52 0.40	NS 0.20 0.31 0.25 0.21	NS no no no
4 5 6	A4 AB Bu	20- 66 66- 81 81-114 114-140 140-152	5.5 5.6 5.7	0.09 0.08 0.10	61 56 49	0.0 0.2 3.1	1.14 1.09 1.01	0.29 0.28 0.23 0.18 0.14	0.45 0.37 0.28	0.21 0.15 0.12	ne ne ne

Sample No.	Exchangeable Ions			Ext. Acidity	CLC	Base	OM	OC:	N	C:N	Seil		
	Ca	Mg	Na	K	Н		Saturation					Fraction	NaF pH
	*			meq/100	gns		Z		7		ratio	e beganne engender ware gebra. 4-10 A	, , • • 440-660
123456	NS 8.6 7.1 5.4 5.4 5.4	NS 2.0 0.8 0.8 0.8	NS 0.1 0.1 0.1 0.1	NS 0.2 0.1 0.1 0.1 0.1	NS 18.8 19.6 16.6 15.8 13.0 9.5	NS 25.0 21.2 18.8 15.5 13.3 10.6	NS 37 29 27 29 32 35	NS 8.46 5.16 3.92 3.04 2.20 1.52	NS 4.92 3.00 2.28 1.77 1.28 0.88	NS 0.341 0.222 0.155 0.112 0.071 0.055	NS 14 14 15 16 18	NS: 1.80 1.80 1.00 1.00 1.00	NS 8.9 9.4 9.4 9.2 9.1

Remarks: CEC's were leached with 102 acidified MaCl, LEC's and nitragens were run by steam distillation. Extractable cations were run on the Jarrell Ash atomic absorption. NS - no sample

Analysis by: Debbie Lisinger

Pedon: Miesen Silt Loam 82-1D-0566 (821D-009-13) Date: May 1984

			Parti	Particle Size Distribution (mm)				Gravel & Stone						
Depth	VCS	CS	MS	FS	VFS	TS	TS	i	TC	>2	aa	Textural		
	2-1.0	1-0.5	0.5-0.25	0.25-0.1	0.1-0.05	2-0.05	0.05-0	.002	(0.002	wt.	vol.	Classes		
C.											-1			
0- 1 1 -20 20- 66 66- 81 81-114 114-140	NS 0.71 0.07 0.03 0.02 0.02 0.01	NS 0.16 0.06 0.04 0.02 0.03 0.02	0.05	NS 1.37 1.31 1.92 1.84 2.57 4.65	NS 3.82 4.95 7.41 8.89 11.39 14.71	NS 6.23 6.46 9.46 10.82 14.06 19.44	75.1 74.1 74. 73.	40 88 87 48 79	NS 17.37 17.66 15.67 14.70 12.15 9.86	NS none none none none none		NS Silt loam Silt loam Silt loam Silt loam Silt loam		
Silt Size Distribution (mm)						Nater (Liqu	ıi d	Plastic	Plastic			
Depth	CoSi	Msi	1	Fsi	Bulk Den	sity	1/3			t	Limit	index		
	0.05-0.	02 0.02-0.0	05 0.00	5-0.002	Clod	Core	Bar	Bar						
C∎		X	~~~~~		g/cc									
0- 1 1- 20 20- 66 66- 81 81-114 114-140 140-152							NS 47.2 47.0 47.2 47.8 45.3 39.6	NS 19.3 16.5 15.0 13.6 11.5						

Remarks: Samples were run by the centrifuge method, 5% sodium hexametaphosphate Analysis by added, sonified, and carbonates were not removed.

NS - no sample

Analysis by: Anita L. Falen